Synthese und Struktur einfacher Mono- und Bis(phosphino)allene

Hubert Schmidbaur*, Thomas Pollok, Gabriele Reber und Gerhard Müller

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-8046 Garching

Eingegangen am 26. Mai 1987

1,1-Dimethylallen kann durch Metallierung mit Alkyllithium-Verbindungen und Umsetzung mit Chlordiphenylphosphan in 3,3-Dimethyl-1-(diphenylphosphino)allen (3) und -1,1-bis(diphenylphosphino)allen (8) übergeführt werden. Der Erfolg der Synthesen hängt stark von den Reaktionsbedingungen ab. Bei abgeänderten Stöchiometrien, Temperaturen und Reaktionszeiten werden auch isomere Alkine $(CH_3)_2CH - C \equiv C - P(C_6H_5)_2$ oder $(C_6H_3)_2P(CH_3)_2C - C \equiv CH$ (6 bzw. 7) erhalten, oder es kommt sogar zur Substitution von Phenylresten am Phosphoratom. So wird bei der Einwirkung von tert-Butyllithium auf intermediär gebildetes 6, gefolgt von Metallierung und Umsetzung mit $(C_6H_5)_2PCI$ das Allen $(CH_3)_2C = C = C[P(C_6H_5)C(CH_3)_3][P(C_6H_5)_2]$ (12) gebildet. Über die genannten Verfahren sind damit erstmals einfach und geminal-doppelt phosphinosubstituierte Allene in guten Ausbeuten zugänglich. Die Prototypen 8 und 12 wurden durch Röntgenbeugungsanalysen strukturell charakterisiert. Die gefundenen Konformationen entsprechen weitgehend denen analoger geminaler Di(phosphino)alkene.

1,1-Bis(diphenylphosphino)ethen¹⁾ (A) und 1,1-Bis(diphenylphosphino)cyclopropan²⁾ (B) entstehen formal durch Ersatz der Methylenbrücke im Bis(diphenylphosphino)methan gegen eine Vinyliden- bzw. Cyclopropylideneinheit. Die feinen strukturellen Besonderheiten dieser neuen zweizähnigen Liganden führen in ihren Komplexen zu deutlich voneinander abweichenden Koordinationsgeometrien³⁾. Das besondere Interesse an diesen Verbindungsklassen begründet sich jedoch vor allem in der Anwesenheit der Doppelbindung bzw. des Dreirings als zusätzlicher reaktiver Zentren, die bei Aktivierung durch Komplexierung^{3b,4)} oder Quartärisierung⁵⁾ neuartige und teilweise unerwartete Reaktionen ermöglichen. In diesem Zusammenhang war es naheliegend, die Untersuchungen auf 1,1-Diphosphinoallene C auszudehnen, bei denen zusätzliche Reaktionsmöglichkeiten und neue strukturelle Eigenheiten zu erwarten waren.

Während in der Literatur ein breites Spektrum an Allenylphosphanoxiden vorhanden ist, die durch Reaktion von Propargylalkoholen mit Chlorphosphanen und anschlie-Bende [2,3]-sigmatrope Umlagerung der intermediär entstehenden Phosphinigsäureester leicht zugänglich sind⁶, stellen Allenylphosphane ein noch unerschlossenes Gebiet dar. Die bisher bekannten einfachen Vertreter entstehen nur zu kleinen Anteilen im Gemisch mit den isomeren Propinylphosphanen⁷ oder sind ohne Angaben zu Herstellung oder Reinheit nur spektroskopisch untersucht worden⁸. Tetrakis(diphenylphosphino)allen (**D**) entsteht in einer Eintopfreaktion durch Deprotonierung von Diphenyl-1-propinyl-

Syntheses and Structures of Simple Mono- and Bis(phosphino)allenes

Metalation of 1,1-dimethylallene with alkyllithium compounds and treatment of the resulting lithiated products with chlorodiphenylphosphane affords 3,3-dimethyl-1-(diphenylphosphino)allene and -1,1-bis(diphenylphosphino)allene (3 and 8, respectively). The success of the syntheses depends strongly on the reaction conditions. With a change in stoichiometry, temperature, or reaction times, isomeric alkynes $(CH_3)_2CH - C \equiv C - P(C_6H_3)_2$ and $(C_6H_5)_2P(CH_3)_2C - C \equiv CH$ (6 and 7, respectively) are also obtained, and even substitution of phenyl for alkyl groups at the phosphorus atom may occur. Thus the reaction of the intermediate 6 with tert-butyllithium followed by treatment with (C₆H₅₎PCl leads to the allene $(CH_3)_2C = C = C[P(C_6H_5)C(CH_3)_3][P(C_6H_5)_2]$ (12). Through the new preparative methods, mono- and (geminally) bis(phosphino)-substituted allenes have now become easily available in good yields. The prototypes 8 and 12 have been structurally characterized by X-ray diffraction analyses. The molecular conformations are very similar to those of analogous geminal di(phosphino)alkenes.

phosphan und nachfolgende Umsetzung mit Chlordiphenylphosphan⁹). Die überraschend einfache Synthese beinhaltet eine Reaktionssequenz mit mehreren Ummetallierungsschritten. Aus dem vierfach substituierten Allen ist durch eine ungewöhnliche Spaltungsreaktion mit Methyllithium Tris(diphenylphosphino)allen (E) zugänglich^{9b}.

Synthese eines einfach phosphinosubstituierten Allens: $Me_2C = C = CH(PPh_2)$

Das Haupthindernis bei der gezielten Synthese einfach oder doppelt phosphinosubstituierter Allene ist die deutlich erhöhte CH-Acidität der restlichen Allen-Wasserstoffatome in diesen Molekülen, die über Ummetallierungsreaktionen letztlich zum vollständigen Ersatz aller H-Atome durch Phosphorsubstituenten Anlaß gibt. Es scheint daher sinnvoll, von Vorstufen auszugehen, die nur zwei substituierbare Protonen enthalten. Die einfachste derartige Verbindung ist 3-Methyl-1,2-butadien (1).

Chem. Ber. 120, 2015-2022 (1987) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1987 0009-2940/87/1212-2015 \$ 02.50/0

1 kann mit Methyllithium in Gegenwart katalytischer Mengen Diisopropylamin zum Lithioallen 2 metalliert werden¹⁰. Anschließende Umsetzung mit Chlordiphenylphosphan bei -25°C ergibt das Allenylphosphan 3, das nach der Destillation als farbloses, oxidationsempfindliches Öl anfällt (Gl. 1).

Die Metallierung von 1 kann auch mit *n*-Butyllithium in Ether bei -30 °C erfolgen. Allerdings ist die Deprotonierung erst nach 36 Stunden abgeschlossen. Nachfolgende Behandlung mit Chlordiphenylphosphan liefert dann ebenfalls das Allenylphosphan 3. Bei höheren Temperaturen ergibt die Metallierung mit *n*-Butyllithium in Ether dagegen das isomere Lithioalkin 5, das mit Chlordiphenylphosphan dann zum Alkinylphosphan 6 weiterreagiert (Gl. 2).

Die Umlagerung von 2 in das thermodynamisch stabilere Lithioalkin 5 erfolgt basenkatalysiert über die Dilithiumverbindung 4, deren Alkinstruktur durch Abfangreaktionen belegt ist¹¹⁾. Die Isomerisierung von 2 zu 5 macht sich auch durch eine Trübung der Reaktionslösung bemerkbar. Die ebenfalls denkbare Bildung von 6 durch nachträgliche basenkatalysierte Isomerisierung von 3 kann durch Versuche mit inverser Reaktionsführung ausgeschlossen werden: Tropft man die Lösung des Lithiumorganyls zur Chlorphosphanlösung, so daß das Produkt nicht mit großen Mengen überschüssiger Base in Berührung kommt, so erhält man trotzdem ausschließlich das Alkinylphosphan 6.

Das Phosphan 6 wird in der Literatur als Komplexligand erwähnt¹²⁾. Bezüglich seiner Darstellung wird auf einen Bericht verwiesen, in dem die Synthese von Alkinylphosphanen aus den entsprechenden Alkinen beschrieben wird¹³⁾. Das Phosphan 6 wird dort jedoch nicht erwähnt, so daß über seine physikalischen und spektroskopischen Eigenschaften nichts bekannt ist. Der hier entwickelte neue Syntheseweg sowie die NMR-spektroskopischen Daten sind daher im Experimentalteil angegeben. Die Metallierung von 1 mit *n*-Butyllithium ist auch mit THF als Lösungsmittel beschrieben ^{11b,14}. Tropft man zu einer auf diese Art erzeugten Lösung des Lithiumorganyls bei -70 °C oder bei 0 °C die Chlorphosphanlösung, so erhält man ein komplexes Gemisch aus den isomeren Phosphanen 3, 6 und 7 sowie dem Bisphosphan 8 (Gl. 3).

Die Reaktion von Allenylanionen mit Elektrophilen kann, je nach der Art der Reaktionspartner, des Gegenions und des Lösungsmittels, aus der Allenylform oder aus der mesomeren Propargylform heraus erfolgen und somit sowohl Allene als auch Propine als Produkte ergeben¹⁵. Im Fall von 2 führt dies hier zur zusätzlichen Bildung von 7. Die Entstehung von 8 erklärt sich wiederum durch eine Ummetallierungsreaktion, die offenbar durch die bessere Solvatation des Lithiums in THF begünstigt wird.

Die in Gl. 1 angegebenen Reaktionsbedingungen (siehe Experimentalteil) stellen somit ein optimiertes Syntheseverfahren dar, nach dem das Allenylphosphan 3 in 60% Ausbeute und hoher Reinheit in größeren Mengen reproduzierbar zugänglich wird. Auch beim zweiten Reaktionsschritt ist die Einhaltung der angegebenen Temperatur von -20 bis -30 °C essentiell. Unterhalb dieser Temperatur findet die Reaktion mit dem Chlorphosphan nicht mehr statt, und bei höherer Temperatur erhält man infolge einer Ummetallierung das Bisphosphan 8 als Nebenprodukt. Von diesem läßt sich 3 zwar durch Destillation abtrennen, aber die Nebenreaktion führt zu einer Senkung der Ausbeute.

Synthese von geminalen Bisphosphinoallenen

Das Allenylphosphan 3 wird durch *n*-Butyllithium in THF bei -35° C glatt metalliert. Anschließende Umsetzung des Lithioallens 9 mit Chlordiphenylphosphan bei der glei-

Chem. Ber. 120, 2015-2022 (1987)

chen Temperatur liefert als einziges Produkt das Bisphosphinoallen 8 (Gl. 4).

Aus dem leichter zugänglichen Alkinylphosphan 6 sollte sich durch Deprotonierung eine Propargyllithiumverbindung herstellen lassen, in der das carbanionische Zentrum durch die Methylgruppen sterisch abgeschirmt ist. Bei der Umsetzung mit dem ebenfalls relativ sperrigen Elektrophil Chlordiphenylphosphan ist daher eher ein Angriff an der Allenylposition zu erwarten, der ebenfalls zum geminalen Bisphosphinoallen führen würde.

Allerdings wird das carbanionische Zentrum durch die doppelte Methylsubstitution destabilisiert, so daß eine deutlich verringerte CH-Acidität zu erwarten ist. Während z. B. Diphenyl(1-propinyl)phosphan in THF mit *n*-Butyllithium glatt metallierbar ist⁹, wird 6 unter gleichen Bedingungen nicht deprotoniert. Auch die Kombination *n*-BuLi/ TMEDA, die in vielen Fällen bei der Metallierung von Phosphinomethanen erfolgreich ist¹⁶, führt bei 6 nicht zum Erfolg. Bei der Umsetzung von 6 mit *tert*-Butyllithium/ TMEDA in Hexan, gefolgt von Chlordiphenylphosphan in THF, kommt es dagegen zur unerwarteten Bildung des unsymmetrischen Bisphosphinoallens **12** (Schema 1).

Schema1

Der Angriff des *tert*-Butyllithiums erfolgt offensichtlich nicht am Proton der Isopropylgruppe, sondern am Phosphoratom unter Substitution eines Phenylrests. Derartige Substitutionen sind im Prinzip bekannt^{17,18,9b}, und speziell die hier eingesetzte Kombination *t*BuLi/TMEDA in Hexan liefert in anderen Systemen bis zu 77% Substitutionsprodukte, während die Metallierung in den Hintergrund tritt^{18b}. Das Phosphan **10** wird in der Folge durch das bei der Substitution gebildete Phenyllithium metalliert, und die Lithiumverbindung **11** reagiert dann mit Chlordiphenylphosphan aus der Allenylform heraus zum Bisphosphan **12**.

Die unsymmetrische Struktur 12 gibt sich im ³¹P-NMR-Spektrum durch ein AB-System mit der ungewöhnlich gro-Ben Kopplungskonstanten ²J(PP) = 174 Hz zu erkennen. Die Verschiebung der Diphenylphosphinogruppe liegt mit $\delta = -5.3$ ppm im Bereich der bisher für geminale Bisphosphinoallene gefundenen Verschiebungen, während das Signal des anderen P-Atoms ($\delta = 9.6$ ppm) durch den *tert*-Butylsubstituenten zu tiefem Feld verschoben wird. Die große Kopplung zwischen den Phosphoratomen schließt eine isomere Alkinstruktur ebenso aus wie das IR-Spektrum, das mit einer Bande bei 1930 cm⁻¹ auf die Allenstruktur hindeutet.

Das interessanteste Merkmal im ¹H- und im ¹³C-NMR-Spektrum von **12** ergibt sich aus der Chiralität des Moleküls, die durch die Anwesenheit dreier unterschiedlicher Substituenten an einem Phosphoratom zustande kommt. Infolgedessen sind die Methylgruppen an der Allenkette sowie die Phenylgruppen des Diphenylphosphinorests diastereotop und befinden sich in jeder Konformation des Moleküls in unterschiedlicher chemischer Umgebung. Man erhält daher jeweils zwei Signale für die Methylgruppen und zwei Sätze von Signalen für die Phenylkohlenstoffatome. Dazu kommen noch die Signale des Phenylrests am anderen Phosphoratom (siehe Experimentalteil).

Beim Vergleich der NMR-Daten der bisher dargestellten Phosphinoallene zeichnen sich systematische Abstufungen ab. Die ³¹P-NMR-Verschiebungen (Tab. 1) von allein stehenden Diphenylphosphinosubstituenten wie auch die von geminalen Bis(diphenylphosphino)allenen liegen jeweils in sehr engen Bereichen um -16 ppm bzw. um -7 ppm.

Tab. 1. ³¹P-NMR-Daten von Phosphinoallenen

Verb.	3	8	12	E ^{9b)}	D ^{9b)}
δ (=CHP)	-16.2		- :	-16.5	
$\delta(=CP_2)$	-	-7.9	- 5.3 ^{a)}	-8.5	-6.9
$^{2}J(PP)$	_	b)	174	b)	b)
⁴ J(PP)		-	-	7.3	b)

^{a)} δ (PPhtBu) = +9.6 ppm. – ^{b)} Aus den ³¹P-NMR-Spektren nicht direkt zu entnehmen.

Tab. 2. ¹³C-NMR-Daten der Allen-C-Atome in Phosphinoallenen

Verb		9	12	15 9b)	D ^{9b)}
• • • • • • • • • • • • • • • • • • •	3	0	12	Ľ	D
δ (=CHP)	84.0		_	83.2	_
$\delta(=CP_2)$	-	93.3	90.2	92.9	89.1
$\delta(=CMe_2)$	94.1	93.6	92.5	_	_
$\delta(=C=)$	208.7	211.8	209.0	210.3	209.7
$^{1}J(=CHP)$	14.6		_	16.6	
$^{1}J(=CP_{2})$	_	32.7	67.5(N)	37.1	B)
$^{2}J(C = CHP)$	13.7	_	_ `_	19.5	
$^{2}J(C = CP_{2})$	_	3.4	<1	2.4	9.8
$^{3}J(C = C = CHP)$	7.8	_	_	7.8	_
$^{3}J(C=C=CP_{2})$	_	4.4	4.2, 1.0	<2	a)

^{a)} Aus den ¹³C-NMR-Spektren nicht direkt zu entnehmen.

In den ¹³C-NMR-Spektren ist der elektronische Effekt der Substitution eines Wasserstoffatoms durch eine Diphenylphosphinogruppe in etwa mit dem einer Methylgruppe vergleichbar. Die einfache Ph₂P- oder CH₃-Substitution bewirkt eine Tieffeldverschiebung gegenüber dem unsubstituierten Allen (δ = 73.5 ppm) auf ungefähr 84 ppm (Tab. 2). Die doppelte Substitution hat eine erneute Tieffeldverschiebung auf etwa 91 ppm zur Folge (Vergleichsdaten für methylsubstituierte Allene finden sich in Lit.¹⁹). Auch bei den Kopplungskonstanten findet man eine deutliche Abhängigkeit von der Mono- bzw. Disubstitution.

Molekülstrukturen der geminalen Bisphosphinoallene 8 und 12

Abb. 1 und Abb. 2 geben die Molekülstrukturen wieder, Tab. 3 und Tab. 4 enthalten ausgewählte Abstände und Winkel. Die Molekülstrukturen von 8 und 12 schließen sich eng an die bereits bekannten Strukturen anderer phosphinosubstituierter Allene wie **D** und E an^{9b)}. Auf die Gemeinsamkeiten mit 1,1-Bis(diphenylphosphino)ethen A^{1a} wurde

ebenfalls bereits hingewiesen^{9b)}. Prominente Strukturmerkmale sind die durch die Phosphinosubstituenten nicht nennenswert gestörte Allengeometrie mit nahezu senkrecht zueinander angeordneten CP2- und CMe2-Ebenen sowie die charakteristische Anordnung der PR2-Gruppen bezüglich der allenischen Doppelbindungen. In 8 wird wieder eine angenäherte syn/anti-Konformation beobachtet^{1a,9b)}. Besonders auffallend ist, daß diese Konformation nahezu unverändert bei beiden kristallographisch unabhängigen Moledie sich külen auftritt, auch sonst ihren in Bindungsparametern nur unwesentlich unterscheiden. Wie aus Abb. 1 unmittelbar hervorgeht, kommt es lediglich bei den Konformationen der Phenylringe bezüglich einer Drehung um die P-C(ipso)-Bindungen zu größeren Unterschieden. Bei 12, das sich von 8 durch den Ersatz einer Phenyl- durch eine tert-Butylgruppe ableitet, ist dagegen auch der PPhtBu-Substituent deutlich in Richtung der "anti"-Konformation des freien Elektronenpaares am Phosphor bezüglich der Allen-Einheit verdreht. Wir sehen als Ursache für diese Unterschiede in erster Linie den unterschiedlichen Raumbedarf der Substituenten und damit die

Tab. 3. Wichtige Abstände [Å] und Winkel [°] in der Struktur von 8 (Standardabweichungen in Einheiten der letzten signifikanten Stelle in Klammern)

Minimierung intra- und intermolekularer sterischer Wechselwirkungen an. Besonders auffällig ist hier die Anordnung

· .	Molekül 1		Molekül 2
C1-P1	1.835(4)	C1'-P2'	1.835(4)
C1-P2	1.864(4)	C1'-P1'	1.842(4)
P1-C10	1.832(4)	P2'-C40'	1.841(4)
P1-C20	1.841(4)	P2'-C30'	1.837(4)
P2-C30	1.847(4)	P1 '-C20 '	1.831(4)
P2-C40	1.841(4)	P1'-C10'	1.832(4)
C1-C2	1.316(6)		1.328(6)
C2-C3	1.304(6)		1.307(6)
C3-C4	1.481(6)		1.510(7)
C3-C5	1.531(6)		1.499(7)
C2-C1-P1	119.9(3)	C2'-C1'-P2'	117.4(3)
C2-C1-P2	117.4(3)	C2'-C1'-P1'	120.6(3)
P1-01-22	122.7(2)	P1'-C1'-P2'	121.9(2)
01-21-010	103.1(2)	C1 1-22 1-0401	101.0(2)
C1-P1-C20	102.1(2)	C1'-P2'-C30'	100.8(2)
C10-P1-C20	101.0(2)	C30'-P2'-C40'	103.9(2)
C1-P2-C30	102.6(2)	C1'-P1'-C20'	102.5(2)
C1-P2-C40	100.6(2)	C1'-P1'-C10'	101.6(2)
C30-P2-C40	101.9(2)	C10'-P1'-C20'	104.5(2)
C1-C2-C3	172.7(4)		177.5(4)
C2-C3-C4	123.3(4)		121.1(4)
C2-C3-C5	120.3(4)		121.1(4)
C4-C3-C5	116.4(4)		117.7(4)

Abb. 1. Molekülstrukturen von 8: a) Molekül 1, b) Molekül 2 (ORTEP, die Schwingungsellipsoide umschreiben 50% Aufenthaltswahrscheinlichkeit; ohne H-Atome. Zum besseren Vergleich mit Molekül 1 wurde für Molekül 2 die zu den Koordinaten von Tab. 6 inverse Struktur gezeichnet. Im Kristall kommen wegen der zentrosymmetrischen Raumgruppe beide Moleküle vor) des *tert*-Butylrests, dessen Methylgruppen mit der zentralen Allen-Achse auf Lücke stehen. Bemerkenswerterweise geben gerade bei **12** auch die Bindungswinkel an C1 (Tab. 4) den unterschiedlichen sterischen Druck der Phosphinoreste schön wieder.

Abb. 2. Molekülstruktur von 12 (ohne H-Atome)

Tab. 4. Wichtige Abstände [Å] und Winkel [°] in der Struktur von 12

C1 - P1	1.833(3)	C2-C1-P1	128.8(2)
C1-P2	1.852(3)	C2-C1-P2	119.6(2)
P1-C10	1.838(3)	P1-C1-P2	111.4(1)
P1-C6	1.882(3)	C1-P1-C10	100.8(1)
P2-C20	1.830(3)	C1-P1-C6	106.4(1)
P2-C30	1.836(3)	C6-P1-C10	103.1(1)
C1-C2	1.310(4)	C1-P2-C20	103.1(1)
C2-C3	1.307(4)	C1-P2-C30	100.3(1)
C3-C4	1.506(4)	C20-P2-C30	102.2(1)
C3-C5	1.504(4)	C1-C2-C3	174.2(3)
		C2-C3-C4	121.0(3)
		C2-C3-C5	122.3(3)
		C4-C3-C5	116.7(3)

Wie bei den bereits vorbeschriebenen Phosphinoallenen^{9b)} unterscheiden sich die C-P- und C=C-Bindungslängen nicht wesentlich von denen "einfacher" Phosphane bzw. Allene, und auch die verschieden substituierten Doppelbindungen in 8 und 12 unterscheiden sich nicht signifikant. Dies erhärtet den überraschenden Befund, daß die *elektronischen* Einflüsse der Phosphinosubstituenten auf die Olefin-Geometrie nur gering sind^{9b)}. Unsere Arbeiten wurden in dankenswerter Weise unterstützt von der Deutschen Forschungsgemeinschaft, vom Fonds der Chemischen Industrie und von der Hoechst AG, Werk Knapsack. Wir danken Herrn J. Riede für die sorgfältigen kristallographischen, Frau U. Graf und Herrn M. Barth für die analytischen Arbeiten.

Experimenteller Teil

Die Versuche wurden zum Ausschluß von Luft und Feuchtigkeit unter reinem, trockenem Stickstoff durchgeführt. Lösungsmittel und Geräte waren entsprechend vorbehandelt. – Zur Aufnahme der Spektren dienten folgende Geräte: ¹H-NMR: Jeol JNM-PMX 60 (60 MHz) und Jeol JNM-GX 270 (270.05 MHz), Standard: TMS (ext.) oder Lösungsmittel (int.), umgerechnet auf TMS; ¹³C-NMR: Jeol JNM-FX 60 (15.00 MHz) und Jeol JNM-GX 270 (67.80 MHz), Standard: Lösungsmittel (int.), umgerechnet auf TMS; ³¹P-NMR: Bruker XL 90 (36.43 MHz), Standard: 85% H₃PO₄ (ext.); IR: Perkin-Elmer 577; MS: Varian MAT 311 A.

(3-Methyl-1,2-butadienyl)diphenylphosphan (3): Eine Lösung von 6.43 g 3-Methyl-1,2-butadien (94.4 mmol) in 50 ml Ether wird bei 0°C mit 82.8 mmol Methyllithium (1.84 м Lösung in Ether) und mit 0.5 ml Diisopropylamin (3.54 mmol) versetzt und anschließend bei Raumtemperatur 2.5 h gerührt. Bei -25°C wird eine Lösung von 15.75 ml Chlordiphenylphosphan (18.27 g, 82.8 mmol) in 30 ml Ether zugetropft, langsam auf Raumtemp, erwärmt und über Nacht gerührt. Das ausgefallene Lithiumchlorid wird abfiltriert und mit 50 ml Ether gewaschen. Das Filtrat wird mit 50 ml Wasser gewaschen, mit MgSO₄ getrocknet und vom Lösungsmittel befreit. Der Rückstand ergibt nach Destillation im Vakuum ein farbloses Öl; Ausb. 12.8 g (61%), Sdp. $115 - 120 \degree C/0.1$ Torr. - ¹H-NMR $(CDCl_3)$: $\delta = 1.5$, dd, ${}^{5}J(HH) = 3.1$ Hz, ${}^{5}J(PH) = 3.8$ Hz, 6H, CH₃; 5.5, d sept., ${}^{5}J(HH) = 3.1$ Hz, ${}^{2}J(PH) = 14.0$ Hz, 1 H, CH; 7.1 bis 7.6, m, 10H, C₆H₅. $-^{31}$ P-NMR (CDCl₃): $\delta = -16.2$, s. $-^{13}$ C-NMR (CDCl₃): $\delta = 19.1$, s, CH₃; 84.0, d, ¹J(PC) = 14.6 Hz, CHP; 94.1, d, ${}^{3}J(PC) = 7.8$ Hz, CMe₂; 128.0, d, ${}^{3}J(PC) = 6.8$ Hz, C3; 128.3, s, C4; 132.7, d, ${}^{2}J(PC) = 18.6$ Hz, C2; 138.3, d, ${}^{1}J(PC) =$ 12.7 Hz, C1; 208.7, d, ${}^{2}J(PC) = 13.7$ Hz, =C=. - IR (Film): 1945 cm⁻¹, $v_{as}(C=C=C)$.

C₁₇H₁₇P (252.3) Ber. C 80.93 H 6.79 Gef. C 80.66 H 6.93

(3-Methyl-1-butinyl)diphenylphosphan (6): Eine Lösung von 1.26 g 3-Methyl-1.2-butadien (18.5 mmol) in 50 ml Ether wird bei -40°C mit 18.3 mmol n-Butyllithium (1.83 M Lösung in Hexan) versetzt, auf Raumtemperatur erwärmt und noch 2 h gerührt. Anschließend wird bei 0°C eine Lösung von 3.48 ml Chlordiphenylphosphan (4.04 g, 18.3 mmol) in 20 ml Ether zugetropft und bei Raumtemperatur über Nacht gerührt. Das ausgefallene Lithiumchlorid wird abfiltriert und das Filtrat im Vakuum vom Lösungsmittel befreit. Der Rückstand ergibt nach Destillation im Vakuum ein farbloses Öl; Ausb. 3.61 g (78%), Sdp. 121-125°C/0.1 Torr. --¹H-NMR (CDCl₃): $\delta = 1.1$, d, ³J(HH) = 6.84 Hz, 6H, CH₃; 2.7, d sept., ${}^{3}J(HH) = 6.84$ Hz, ${}^{4}J(PH) = 1.47$ Hz, 1 H, CH; 7.1 bis 7.8, m, 10 H, C₆H₅. $-^{31}$ P-NMR (CDCl₃): $\delta = -33.6$, s. $-^{13}$ C-NMR (CDCl₃): δ = 21.8, d, ³J(PC) = 1.0 Hz, CH; 22.6, d, ⁴J(PC) = 1.0 Hz, CH₃; 74.8, d, ¹J(PC) = 2.0 Hz, $P-C \equiv$; 115.5, d, ²J(PC) =3.4 Hz, $\equiv C - C$; 128.3, d, ³J(PC) = 7.4 Hz, C3; 128.5, s, C4; 132.1, d, ${}^{2}J(PC) = 21.0$ Hz, C2; 137.0, d, ${}^{1}J(PC) = 7.3$ Hz, C1.

NMR-Daten von (1,1-Dimethyl-2-propinyl) diphenylphosphan (7): ¹H-NMR (CDCl₃): $\delta = 1.35$, d, ³J(PH) = 14.4 Hz, 6H, CH₃; 2.23, d, ⁴J(PH) = 1.6 Hz, 1H, CH; 7.1 bis 7.9, m, 10H, C₆H₅. - ³¹P-NMR (CDCl₃): $\delta = 13.5$, s. - ¹³C-NMR (CDCl₃): $\delta = 28.0$, d, ²J(PC) = 20.5 Hz, CH₃; 59.7, d, ¹J(PC) = 37.1 Hz, PC; 71.5, s, \equiv CH; 89.1, d, ²J(PC) = 3.9 Hz, C-C \equiv . - ¹³C-NMR (CDCl₃),

Tab. 5. Kristallstrukturdaten von 8 und 12

Tab. 6 (Fortsetzung)

	8	12	ATOM
		<u> </u>	C14
Formel	$C_{29}H_{26}P_2$	$C_{27}H_{30}P_2$	C14'
	436.48	416.5	
Kristallsystem	Iriklin	l riklin	C15
Raumgruppe	P1	<i>P</i> 1	C1.8/
a	11.359(2)	8.286(1)	013
b	14.991(2)	9.960(2)	C20
c [Å]	14.852(2)	15.518(2)	
α	102.28(1)	99.36(1)	C20'
β	81.17(1)	80.98(1)	C21
γ [°]	101.37(1)	105.72(1)	
V [Å ³]	2406.2	1207.8	C21 /
Z	4	2	C22
$D_{\rm ber} [\rm g cm^{-3}]$	1.205	1.145	UZZ
$\mu(Mo-K_{\alpha}) [cm^{-1}]$	1.9	1.8	C221
F(000) [e]	920	444	c 3 7
<i>T</i> [°C]	-35	-35	623
Scan	ω	ω	C231
Scan-Breite [°, in ω]	0.8	0.9	
Scan-Geschw. [°min ⁻¹]	0.8 19.5	0.8 - 29.3	124
$(\sin \Theta/\lambda)_{\max} [Å^{-1}]$	0.550	0.572	C24′
hkl-Bereich	$+12, \pm 16, \pm 16$	+9, ±11, ±17	
Gemessene Reflexe	7380	3800	025
Unabh. Reflexe	6722	3800	C25'
"Beobachtete" Reflexe	5378	3077	
$[I = 2.0 \sigma(I)]$			C30
Verfeinerte Parameter	559 (2 Blöcke)	262	C30/
R ^{a)}	0.049	0.048	
R _w ^{b)}	0.058	0.050	C31
$\Delta Q_{\text{fin}} (\text{max/min}) [eÅ^{-3}]$	+0.99/-0.49	+0.48/-0.51	C31′

^{a)}
$$R = \Sigma(||F_o| - |F_c||)/\Sigma |F_o|. - {}^{b)} R_w = [\Sigma w(|F_o| - |F_c|)^2/\Sigma w F_o^2]^{1/2}.$$

Tab. 6. Fraktionelle Atomkoordinaten und äquivalente, isotrope Temperaturfaktoren von 8 $(U_{eq} = (U_1 U_2 U_3)^{1/3}$, wobei U_i die Eigenwerte der U_{ij} -Matrix sind)

ATOM	X/A	Y/B	2/C	U(eq.)
P1	0,3670(1)	0.9433(1)	0,2566(1)	0.024
P1'	0.2806(1)	0.5318(1)	0.6834(1)	0.027
P2	0.1681(1)	1,0677(1)	0.2450(1)	0.025
P21	0.3304(1)	0,4533(1)	0.8567(1)	0.029
C1	0.2739(3)	0.9858(2)	0,1899(2)	0.023
C1′	0,2261(3)	0.4799(2)	0,7872(2)	0.026
C2	0.2838(3)	0.9612(2)	0.0989(2)	0.024
C2'	0.1091(3)	0.4662(2)	0.8180(2)	0.027
С3	0.2877(3)	0.9462(2)	0.0088(2)	0.028
C3 '	-0.0059(3)	0.4566(2)	0,8485(2)	0.036
C 4	0.2094(3)	0,8684(3)	-0,0443(3)	0.043
C4'	-0.0910(3)	0,3679(3)	0.8181(3)	0.048
C5	0.3710(3)	1,0136(3)	-0.0471(2)	0.039
C5′	-0.0587(4)	0,5345(3)	0.9118(3)	0.047
C10	0,4620(3)	1.0495(2)	0.3088(2)	0.024
C10'	0.1535(3)	0,5874(2)	0.6756(2)	0.027
C11	0,4917(3)	1.1290(2)	0.2703(2)	0.028
C11'	0,1187(3)	0.6531(2)	0,7517(2)	0.031
C12	0,5758(3)	1,2037(2)	0,3076(2)	0.038
C12'	0,0283(4)	0,7024(2)	0.7488(3)	0.038
C13	0.6286(3)	1,1998(2)	0.3837(2)	0.035
C13′	-0.0279(3)	0.6881(2)	0.6697(3)	0.039

C14 0.6000(3) 1.1215(2) 0.4228(2) 0.033 C14' 0.0094(4) 0.4256(2) 0.5917(3) 0.040 C15 0.5189(3) 1.0477(2) 0.3856(2) 0.027 C15' 0.0974(3) 0.5738(2) 0.5956(2) 0.035 C20 0.2595(3) 0.4104(2) 0.4304(2) 0.027 C21 0.2199(3) 0.4483(2) 0.5074(2) 0.033 C22 0.1358(3) 0.4997(3) 0.5027(2) 0.038 C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.039 C24' 0.1319(3) 0.7975(3) 0.4313(3) 0.038 C24' 0.1319(3) 0.7975(3) 0.4469(2) 0.037 C25 0.2143(3) 0.8252(2) 0.3661(2) 0.037 C30 0.0188(3) 0.7972(2) 0.2379(2) 0.027 C31 0.018(3) 0.8970(2) 0.238 0.31 C32	ATOM	X/A	Y/19	Z/C	U(eq.)
C14' 0.0094(4) 0.4256(2) 0.5917(3) 0.040 C15 0.5189(3) 1.0477(2) 0.3856(2) 0.029 C15' 0.0974(3) 0.5738(2) 0.5956(2) 0.035 C20 0.2595(3) 0.9178(2) 0.3577(2) 0.025 C20 0.2708(3) 0.4304(2) 0.5993(2) 0.027 C21 0.2199(3) 0.9847(2) 0.4304(2) 0.033 C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C33 0.2981(3) 0.277(2) 0.528(3) 0.039 C24 0.1317(3) 0.8647(3) 0.4313(3) 0.038 C24' 0.2097(3) 0.2477(2) 0.5269(3) 0.039 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.031 C30 0.0188(3) 0.9792(2) 0.2409(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C30'<	C14	0.6000(3)	1.1215(2)	0,4228(2)	0.033
C15 0.5189(3) 1.0477(2) 0.3856(2) 0.029 C15' 0.0974(3) 0.5738(2) 0.5956(2) 0.035 C20 0.2595(3) 0.9178(2) 0.3577(2) 0.025 C20' 0.2708(3) 0.4304(2) 0.5893(2) 0.027 C21 0.2199(3) 0.9847(2) 0.4304(2) 0.026 C21' 0.3455(3) 0.4383(2) 0.5074(2) 0.033 C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22' 0.3342(4) 0.3619(3) 0.4372(2) 0.042 C33 0.0917(3) 0.8667(3) 0.5028(3) 0.037 C24 0.1319(3) 0.7975(3) 0.4313(3) 0.038 C24 0.1297(3) 0.2627(2) 0.5269(3) 0.037 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.035 C25' 0.1497(3) 0.4359(2) 0.227 C31 0.0188(3) 0.9972(2) 0.2339(2) 0.027 C31 0.0188(3	C14'	0.0094(4)	0.6256(2)	0.5917(3)	0.040
C15' 0.0974(3) 0.5738(2) 0.5956(2) 0.035 C20 0.2595(3) 0.9178(2) 0.3577(2) 0.025 C20' 0.2708(3) 0.4304(2) 0.5893(2) 0.027 C21 0.2199(3) 0.9947(2) 0.4304(2) 0.026 C21' 0.3455(3) 0.4383(2) 0.5074(2) 0.033 C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.037 C24 0.1319(3) 0.2764(3) 0.4469(2) 0.037 C24 0.1319(3) 0.2677(2) 0.5269(3) 0.039 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.031 C30 0.0188(3) 0.992(2) 0.2409(2) 0.025 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C31 0.5115(4) 0.8970(2) 0.2388(3) 0.044 C32<	C15	0.5189(3)	1.0477(2)	0.3856(2)	0.029
C20 0.2595(3) 0.9178(2) 0.3577(2) 0.025 C20' 0.2708(3) 0.4304(2) 0.5893(2) 0.027 C21 0.2199(3) 0.4304(2) 0.4304(2) 0.026 C21' 0.3455(3) 0.4383(2) 0.5074(2) 0.033 C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.037 C24 0.1319(3) 0.7995(3) 0.44149(2) 0.037 C24 0.1319(3) 0.2677(2) 0.5269(3) 0.039 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.031 C30 0.188(3) 0.9922(2) 0.2409(2) 0.025 C30' 0.4607(3) 0.4359(2) 0.2339(2) 0.031 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C31' 0.5715(3) 0.4961(2) 0.7656(2) 0.036 C3	C15'	0.0974(3)	0.5738(2)	0.5956(2)	0.035
C20' 0.2708(3) 0.4304(2) 0.5893(2) 0.027 C21 0.2199(3) 0.9947(2) 0.4304(2) 0.026 C21' 0.3455(3) 0.4383(2) 0.5074(2) 0.033 C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22 0.3342(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.039 C24 0.1319(3) 0.2764(3) 0.44469(2) 0.039 C24 0.1319(3) 0.2777(2) 0.5269(3) 0.039 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.037 C30 0.0188(3) 0.9922(2) 0.2409(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2389(2) 0.031 C31' 0.5715(3) 0.4961(2) 0.7659(2) 0.037 C32' 0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.6693(4) 0.4726(3) 0.7009(3) 0.051 C	C20	0,2595(3)	0.9178(2)	0.3577(2)	0.025
C21 0.2199(3) 0.9847(2) 0.4304(2) 0.026 C21' 0.3455(3) 0.4383(2) 0.5074(2) 0.033 C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.039 C24 0.1319(3) 0.7975(3) 0.4419(2) 0.039 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.035 C25 0.2143(3) 0.8252(2) 0.2409(2) 0.042 C30 0.0188(3) 0.9922(2) 0.2409(2) 0.0425 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C31' 0.5715(3) 0.44661(2) 0.7689(2) 0.032 C31' 0.5716(3) 0.4359(2) 0.7689(2) 0.036 C32' 0.1151(4) 0.8450(3) 0.2398(3) 0.0444 C32' 0.6556(4) 0.3898(4) 0.6382(3) 0.049	C201	0,2708(3)	0,4304(2)	0,5893(2)	0.027
C21' 0.3455(3) 0.4383(2) 0.5074(2) 0.033 C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.037 C24 0.1319(3) 0.7795(3) 0.44313(3) 0.037 C24 0.1319(3) 0.7975(3) 0.44313(3) 0.037 C25 0.2143(3) 0.8252(2) 0.3661(2) 0.031 C30 0.0188(3) 0.992(2) 0.2409(2) 0.025 C31' 0.4607(3) 0.4359(2) 0.7689(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C32' 0.4697(4) 0.4726(3) 0.7097(3) 0.651 C33 -0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.6556(4) 0.3898(4) 0.6382(3) 0.047 C33' -0.6556(4) 0.3898(4) 0.6382(3) 0.047 <t< td=""><td>C21</td><td>0.2199(3)</td><td>0.9847(2)</td><td>0.4304(2)</td><td>0.026</td></t<>	C21	0.2199(3)	0.9847(2)	0.4304(2)	0.026
C22 0.1358(3) 0.9599(3) 0.5027(2) 0.038 C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.039 C23' 0.2881(3) 0.2744(3) 0.4449(2) 0.039 C24 0.1319(3) 0.7995(3) 0.4413(3) 0.038 C24' 0.2097(3) 0.2677(2) 0.5269(3) 0.039 C25 0.2143(3) 0.6252(2) 0.3601(2) 0.031 C30 0.0188(3) 0.9922(2) 0.2409(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C32' 0.4607(3) 0.4359(3) 0.2388(3) 0.044 C32' 0.4693(4) 0.4726(3) 0.7099(3) 0.051 C33 -0.2131(3) 0.8988(3) 0.2473(3) 0.039 C34' -0.4556(4) 0.3998(4) 0.64382(3) 0.049 C33' -0.6557(4) 0.3521(2) 0.7058(3) 0.6409	C21 '	0,3455(3)	0.4383(2)	0.5074(2)	0.033
C22' 0.3542(4) 0.3619(3) 0.4372(2) 0.042 C23 0.0917(3) 0.8667(3) 0.5028(3) 0.037 C23' 0.2881(3) 0.2744(3) 0.44469(2) 0.037 C24 0.1319(3) 0.7975(3) 0.4413(3) 0.037 C24 0.1319(3) 0.7975(3) 0.44313(3) 0.037 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.031 C30 0.0188(3) 0.9722(2) 0.2409(2) 0.025 C31' 0.4607(3) 0.4359(2) 0.7689(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C32' 0.6673(4) 0.4726(3) 0.7689(2) 0.037 C31' 0.5715(3) 0.4961(2) 0.7656(2) 0.036 C32' 0.6693(4) 0.4726(3) 0.7009(3) 0.051 C33' 0.6556(4) 0.3898(4) 0.6382(3) 0.047 C34' 0.5452(5) 0.3293(3) 0.2542(2) 0.033 <	C22	0,1358(3)	0.9599(3)	0,5027(2)	0.038
C23 0.0917(3) 0.8667(3) 0.5028(3) 0.039 C23' 0.2861(3) 0.2764(3) 0.4469(2) 0.039 C24 0.1319(3) 0.7995(3) 0.4313(3) 0.038 C24 0.2097(3) 0.2677(2) 0.5269(3) 0.037 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.035 C25' 0.1991(3) 0.3443(2) 0.5980(2) 0.027 C30 0.0188(3) 0.9922(2) 0.2409(2) 0.027 C31 0.0018(3) 0.4859(2) 0.727 0.31 C30' 0.4607(3) 0.4359(2) 0.7689(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C32' -0.151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.6655(4) 0.3898(4) 0.6382(3) 0.6497 C33' -0.2131(3) 0.8980(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35	C221	0.3542(4)	0.3619(3)	0.4372(2)	0.042
C23' 0.2881(3) 0.2764(3) 0.4469(2) 0.039 C24 0.1319(3) 0.7995(3) 0.4313(3) 0.038 C24' 0.2097(3) 0.2677(2) 0.5269(3) 0.039 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.035 C25' 0.1991(3) 0.3443(2) 0.5980(2) 0.031 C30 0.0188(3) 0.9922(2) 0.2409(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C32' -0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.6693(4) 0.4726(3) 0.7009(3) 0.051 C33 -0.2131(3) 0.8884(3) 0.2473(3) 0.037 C34' 0.4556(4) 0.3898(4) 0.6382(3) 0.044 C34' 0.5452(5) 0.3293(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35' -0.0832(3) 1.0347(2) 0.2520(2) 0.033	C23	0.0917(3)	0.8667(3)	0.5028(3)	0.039
C24 0.1319(3) 0.7995(3) 0.4313(3) 0.038 C24' 0.2097(3) 0.2677(2) 0.5269(3) 0.039 C25 0.2143(3) 0.8252(2) 0.3601(2) 0.035 C25' 0.1991(3) 0.3443(2) 0.5980(2) 0.031 C30 0.0188(3) 0.9922(2) 0.2409(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C32 -0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32 -0.1151(4) 0.8450(3) 0.2409(2) 0.035 C33 -0.2131(3) 0.8980(3) 0.2388(3) 0.044 C32' 0.6693(4) 0.4726(3) 0.7009(3) 0.051 C33 -0.2131(3) 0.8988(3) 0.2473(3) 0.039 C34' 0.5452(5) 0.3293(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.0402	C231	0.2881(3)	0.2764(3)	0.4469(2)	0.039
C24' $0.2097(3)$ $0.2477(2)$ $0.5269(3)$ 0.039 $C25$ $0.2143(3)$ $0.8252(2)$ $0.3601(2)$ 0.035 $C25'$ $0.1991(3)$ $0.3443(2)$ $0.5980(2)$ 0.031 $C30$ $0.0188(3)$ $0.9922(2)$ $0.2409(2)$ 0.025 $C30'$ $0.4607(3)$ $0.4359(2)$ $0.7689(2)$ 0.027 $C31$ $0.0018(3)$ $0.8970(2)$ $0.2339(2)$ 0.031 $C31'$ $0.5715(3)$ $0.4961(2)$ $0.7656(2)$ 0.034 $C32$ $-0.1151(4)$ $0.8450(3)$ $0.2388(3)$ 0.044 $C32'$ $0.6693(4)$ $0.4726(3)$ $0.7009(3)$ 0.051 $C33$ $-0.2131(3)$ $0.8984(3)$ $0.2473(3)$ 0.039 $C34'$ $0.655(4)$ $0.3998(4)$ $0.6382(3)$ 0.049 $C34'$ $0.5452(5)$ $0.3293(3)$ $0.2542(2)$ 0.036 $C34'$ $0.5452(5)$ $0.3293(3)$ $0.2542(2)$ 0.033 $C35'$ $-0.0832(3)$ $1.0347(2)$ $0.2520(2)$ 0.033 $C35'$ $0.4505(4)$ $0.3521(2)$ $0.7058(3)$ 0.040 $C40'$ $0.1723(3)$ $1.1308(2)$ $0.17040(2)$ 0.025 $C40'$ $0.3780(3)$ $0.5684(2)$ $0.9254(2)$ 0.032 $C41'$ $0.4333(3)$ $0.6506(2)$ $0.8927(2)$ 0.034 $C42'$ $0.1190(3)$ $1.1468(2)$ $0.0041(2)$ 0.032 $C41'$ $0.4332(3)$ $0.7355(2)$ $0.9507(3)$ 0.037 $C41'$ $0.4352(3)$	C24	0.1319(3)	0.7995(3)	0,4313(3)	0.038
C25 $0.2143(3)$ $0.8252(2)$ $0.3601(2)$ 0.035 C25' $0.1991(3)$ $0.3443(2)$ $0.5980(2)$ 0.031 C30 $0.0188(3)$ $0.9922(2)$ $0.2409(2)$ 0.025 C30' $0.4607(3)$ $0.4359(2)$ $0.7689(2)$ 0.027 C31 $0.0018(3)$ $0.8970(2)$ $0.2339(2)$ 0.031 C31' $0.5715(3)$ $0.4961(2)$ $0.7656(2)$ 0.036 C32 $-0.1151(4)$ $0.8450(3)$ $0.2388(3)$ 0.044 C32' $0.6693(4)$ $0.4726(3)$ $0.7009(3)$ 0.051 C33 $-0.2131(3)$ $0.8988(4)$ $0.6382(3)$ 0.047 C34 $-0.1970(3)$ $0.9830(3)$ $0.2542(2)$ 0.036 C35' $-0.0832(3)$ $1.0347(2)$ $0.2520(2)$ 0.033 C35' $0.4505(4)$ $0.3521(2)$ $0.7058(3)$ 0.040 C40 $0.1723(3)$ $1.1308(2)$ $0.1506(2)$ 0.025 C40' $0.3780(3)$ $0.5684(2)$ $0.9254(2)$ 0.025 C41' $0.4033(3)$ $0.6506(2)$ $0.8927(2)$ 0.034 C42 $0.1190(3)$ $1.1468(2)$ $0.0041(2)$ 0.032 C43' $0.1949(3)$ $1.2311(2)$ $0.0092(2)$ 0.035 C43' $0.4355(3)$ $0.7389(2)$ $1.0449(2)$ 0.036 C44' $0.2415(3)$ $1.262(2)$ $0.0841(3)$ 0.036 C44' $0.4116(3)$ $0.6583(3)$ $1.0792(2)$ 0.034 C45' $0.2486(3)$ $1.2156(2)$ $0.1552(2)$	C24′	0,2097(3)	0,2677(2)	0.5269(3)	0.039
C25' $0.1991(3)$ $0.3443(2)$ $0.5980(2)$ 0.031 $C30$ $0.0188(3)$ $0.9922(2)$ $0.2409(2)$ 0.025 $C30'$ $0.4607(3)$ $0.4359(2)$ $0.7689(2)$ 0.027 $C31$ $0.0018(3)$ $0.8970(2)$ $0.2339(2)$ 0.031 $C31'$ $0.5715(3)$ $0.4961(2)$ $0.7656(2)$ 0.036 $C32$ $-0.1151(4)$ $0.8450(3)$ $0.2388(3)$ 0.044 $C32'$ $0.6693(4)$ $0.4726(3)$ $0.7009(3)$ 0.051 $C33$ $-0.2131(3)$ $0.8884(3)$ $0.2473(3)$ 0.037 $C33'$ $0.6556(4)$ $0.3898(4)$ $0.6382(3)$ 0.049 $C34'$ $0.5452(5)$ $0.3293(3)$ $0.6409(3)$ 0.050 $C34'$ $0.5452(5)$ $0.3293(3)$ $0.6409(3)$ 0.050 $C35'$ $0.4505(4)$ $0.3521(2)$ $0.7058(3)$ 0.040 $C40'$ $0.1723(3)$ $1.0347(2)$ $0.2520(2)$ 0.033 $C35'$ $0.4505(4)$ $0.3521(2)$ $0.7058(3)$ 0.040 $C40'$ $0.3780(3)$ $0.5684(2)$ $0.9264(2)$ 0.027 $C41'$ $0.1087(3)$ $1.0968(2)$ $0.0740(2)$ 0.032 $C42'$ $0.1190(3)$ $1.1468(2)$ $0.0041(2)$ 0.032 $C41'$ $0.4322(3)$ $0.7355(2)$ $0.9597(3)$ 0.037 $C43$ $0.1949(3)$ $1.2311(2)$ $0.0092(2)$ 0.035 $C43'$ $0.4355(3)$ $0.7389(2)$ $1.0449(2)$ 0.036 $C44'$ $0.4355(3)$ <	C25	0.2143(3)	0.8252(2)	0.3601(2)	0.035
C30 0.0188(3) 0.9922(2) 0.2409(2) 0.025 C30' 0.4607(3) 0.4359(2) 0.7689(2) 0.027 C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C31' 0.5715(3) 0.4961(2) 0.7656(2) 0.036 C32 -0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.66693(4) 0.4726(3) 0.7009(3) 0.051 C33 -0.2131(3) 0.8884(3) 0.2473(3) 0.039 C34' 0.6556(4) 0.3898(4) 0.6382(3) 0.049 C34' -0.1970(3) 0.9830(3) 0.2542(2) 0.036 C35' 0.4552(5) 0.3293(3) 0.6409(3) 0.050 C35' 0.4505(4) 0.3521(2) 0.7038 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9254(2) 0.027 C41 0.1087(3) 1.0968(2) 0.9264(2) 0.025 <t< td=""><td>C25′</td><td>0.1991(3)</td><td>0.3443(2)</td><td>0.5980(2)</td><td>0.031</td></t<>	C25′	0.1991(3)	0.3443(2)	0.5980(2)	0.031
C30' $0.4607(3)$ $0.4359(2)$ $0.7689(2)$ 0.027 C31 $0.0018(3)$ $0.8970(2)$ $0.2339(2)$ 0.031 C31' $0.5715(3)$ $0.4961(2)$ $0.7656(2)$ 0.036 C32 $-0.1151(4)$ $0.8450(3)$ $0.2388(3)$ 0.044 C32' $0.6693(4)$ $0.4726(3)$ $0.7009(3)$ 0.051 C33 $-0.2131(3)$ $0.86884(3)$ $0.2473(3)$ 0.037 C34 $-0.1970(3)$ $0.9830(3)$ $0.2542(2)$ 0.036 C34' $0.5452(5)$ $0.3293(3)$ $0.6409(3)$ 0.050 C35 $-0.0832(3)$ $1.0347(2)$ $0.2520(2)$ 0.033 C35' $0.4505(4)$ $0.3521(2)$ $0.7058(3)$ 0.040 C40 $0.1723(3)$ $1.1308(2)$ $0.1506(2)$ 0.027 C41 $0.1087(3)$ $0.6506(2)$ $0.8927(2)$ 0.034 C42 $0.1190(3)$ $1.1468(2)$ $0.0041(2)$ 0.032 C41' $0.4322(3)$ $0.7355(2)$ $0.9507(3)$ 0.037 C43 $0.1949(3)$ $1.2311(2)$ $0.0092(2)$ 0.035 C43' $0.4355(3)$ $0.7389(2)$ $1.0449(2)$ 0.036 C44' $0.4116(3)$ $0.6583(3)$ $1.0792(2)$ 0.034 C45 $0.2486(3)$ $1.2156(2)$ $0.1552(2)$ 0.032 C45' $0.3841(3)$ $0.5729(2)$ $1.0203(2)$ 0.031	C30	0,0188(3)	0.9922(2)	0.2409(2)	0.025
C31 0.0018(3) 0.8970(2) 0.2339(2) 0.031 C31' 0.5715(3) 0.4961(2) 0.7656(2) 0.036 C32 -0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.6693(4) 0.4726(3) 0.7009(3) 0.051 C33 -0.2131(3) 0.8684(3) 0.2473(3) 0.039 C34 -0.1970(3) 0.9830(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.032 C42' 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037	C30'	0.4607(3)	0.4359(2)	0.7689(2)	0.027
C31' 0.5715(3) 0.4961(2) 0.7656(2) 0.036 C32 -0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.6693(4) 0.4726(3) 0.7009(3) 0.051 C33 -0.2131(3) 0.8884(3) 0.2473(3) 0.039 C33' 0.6556(4) 0.3898(4) 0.6382(3) 0.047 C34 -0.1970(3) 0.9830(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9254(2) 0.027 C41 0.1087(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.032 C42' 0.1190(3) 1.1468(2) 0.0041(2) 0.032	C31	0.0018(3)	0.8970(2)	0,2339(2)	0.031
C32 -0.1151(4) 0.8450(3) 0.2388(3) 0.044 C32' 0.66693(4) 0.4726(3) 0.7009(3) 0.051 C33 -0.2131(3) 0.8884(3) 0.2473(3) 0.039 C34 -0.1970(3) 0.79830(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3760(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42' 0.1190(3) 1.0748(2) 0.0921(2) 0.037 C43' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C44' 0.4194(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C	C31′	0,5715(3)	0.4961(2)	0.7656(2)	0.036
C32' $0.6693(4)$ $0.4726(3)$ $0.7009(3)$ 0.051 C33 $-0.2131(3)$ $0.86884(3)$ $0.2473(3)$ 0.039 C33' $0.6556(4)$ $0.3898(4)$ $0.6382(3)$ 0.049 C34 $-0.1970(3)$ $0.9930(3)$ $0.2542(2)$ 0.036 C34' $0.5452(5)$ $0.3293(3)$ $0.6409(3)$ 0.050 C35 $-0.0832(3)$ $1.0347(2)$ $0.2520(2)$ 0.033 C35' $0.4505(4)$ $0.3521(2)$ $0.7058(3)$ 0.040 C40 $0.1723(3)$ $1.1308(2)$ $0.1506(2)$ 0.025 C40' $0.3780(3)$ $0.5684(2)$ $0.9264(2)$ 0.027 C41 $0.1087(3)$ $1.0968(2)$ $0.0740(2)$ 0.032 C41' $0.4033(3)$ $0.6506(2)$ $0.8927(2)$ 0.034 C42 $0.1190(3)$ $1.1468(2)$ $0.0041(2)$ 0.032 C43' $0.1949(3)$ $1.2311(2)$ $0.0092(2)$ 0.035 C43' $0.4355(3)$ $0.7389(2)$ $1.0449(2)$ 0.036 C44' $0.2615(3)$ $1.2262(2)$ $0.0841(3)$ 0.036 C44' $0.4116(3)$ $0.6583(3)$ $1.0792(2)$ 0.032 C45' $0.3841(3)$ $0.5729(2)$ $1.0203(2)$ 0.031	C32	-0.1151(4)	0.8450(3)	0.2388(3)	0.044
C33 -0.2131(3) 0.8884(3) 0.2473(3) 0.039 C33' 0.6556(4) 0.3898(4) 0.6382(3) 0.049 C34 -0.1970(3) 0.9830(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.036 C44' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C43' 0.4355(3) 1.2662(2) 0.0841(3) 0.036	C32'	0,6693(4)	0,4726(3)	0.7009(3)	0.051
C33' 0.6556(4) 0.3898(4) 0.6382(3) 0.049 C34 -0.1970(3) 0.9830(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4003(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44' 0.2415(3) 1.2662(2) 0.0841(3) 0.036 <	C33	-0.2131(3)	0.8884(3)	0.2473(3)	0.039
C34 -0.1970(3) 0.9830(3) 0.2542(2) 0.036 C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C43' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43' 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C44' 0.2486(3) 1.2156(2) 0.1552(2) 0.032	C33'	0,6356(4)	0.3898(4)	0.6382(3)	0.049
C34' 0.5452(5) 0.3293(3) 0.6409(3) 0.050 C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.037 C43' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43' 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44' 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.032 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.031 <	C34	-0.1970(3)	0,9830(3)	0,2542(2)	0.036
C35 -0.0832(3) 1.0347(2) 0.2520(2) 0.033 C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4003(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44' 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.032 C44' 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C34′	0.5452(5)	0.3293(3)	0,6409(3)	0.050
C35' 0.4505(4) 0.3521(2) 0.7058(3) 0.040 C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44' 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C35	-0.0832(3)	1.0347(2)	0.2520(2)	0.033
C40 0.1723(3) 1.1308(2) 0.1506(2) 0.025 C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.032 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C35′	0.4505(4)	0,3521(2)	0.7058(3)	0.040
C40' 0.3780(3) 0.5684(2) 0.9264(2) 0.027 C41 0.1087(3) 1.0968(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C40	0,1723(3)	1.1308(2)	0.1506(2)	0.025
C41 0.1087(3) 1.0948(2) 0.0740(2) 0.025 C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.032 C44' 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C40'	0.3780(3)	0.5684(2)	0.9264(2)	0.027
C41' 0.4033(3) 0.6506(2) 0.8927(2) 0.034 C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C41	0.1087(3)	1.0968(2)	0.0740(2)	0.025
C42 0.1190(3) 1.1468(2) 0.0041(2) 0.032 C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C41'	0,4033(3)	0.6506(2)	0.8927(2)	0.034
C42' 0.4322(3) 0.7355(2) 0.9507(3) 0.037 C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C42	0,1190(3)	1.1468(2)	0.0041(2)	0.032
C43 0.1949(3) 1.2311(2) 0.0092(2) 0.035 C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C42'	0,4322(3)	0.7355(2)	0.9507(3)	0.037
C43' 0.4355(3) 0.7389(2) 1.0449(2) 0.036 C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C43	0,1949(3)	1,2311(2)	0.0092(2)	0.035
C44 0.2615(3) 1.2662(2) 0.0841(3) 0.036 C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C43'	0.4355(3)	0.7389(2)	1.0449(2)	0.036
C44' 0.4116(3) 0.6583(3) 1.0792(2) 0.034 C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C44	0,2615(3)	1,2662(2)	0.0841(3)	0.036
C45 0.2486(3) 1.2156(2) 0.1552(2) 0.032 C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031	C44'	0,4116(3)	0,6583(3)	1.0792(2)	0.034
<u>C45' 0.3841(3) 0.5729(2) 1.0203(2) 0.031</u>	C45	0,2486(3)	1,2156(2)	0.1552(2)	0.032
	C45'	0.3841(3)	0.5729(2)	1.0203(2)	0.031

¹H-gekoppelt: $\delta = 71.5$, d, ¹J(CH) = 249.0 Hz, \equiv CH; 89.1, dd, ²J(CH) = 48.8 Hz, C-C \equiv .

1,1-Bis(diphenylphosphino)-3-methyl-1,2-butadien (8): Zu einer Lösung von 2 ml 3 (1.94 g, 7.69 mmol) in 20 ml THF werden bei -40° C 7.7 mmol n-Butyllithium (1.94 M Lösung in Hexan) pipettiert. Die Lösung wird 2 h zwischen -30 und -40° C gerührt. Bei -30° C wird eine Lösung von 1.46 ml Chlordiphenylphosphan (1.70 g, 7.7 mmol) in 10 ml THF langsam zugetropft. Die Lösung wird langsam auf Raumtemperatur erwärmt und noch 2.5 h gerührt. Anschließend wird das Lösungsmittel abgezogen, der Rückstand in 50 ml Dichlormethan aufgenommen, mit 30 ml Wasser gewaschen und mit Magnesiumsulfat getrocknet. Das Lösungsmittel wird erneut abgezogen und das zurückbleibende gelbe Öl aus 25 ml Ethanol kristallisiert. Erneute Kristallisation aus 15 ml Ethanol ergibt **8** als farblosen Feststoff; Ausb. 2.12 g (63%), Schmp. 50°C. – ¹H-NMR (CDCl₃): $\delta = 1.25$, t, ⁵J(PH) = 2.4 Hz, 6H, CH₃; 7.1 bis 7.6, m, 20H, C₆H₅. – ³¹P-NMR (CDCl₃): $\delta = -7.9$, s. – ¹³C-NMR (CDCl₃): $\delta = 18.3$, s, CH₃; 93.3, t, ¹J(PC) = 32.7 Hz, CP₂; 93.6, t, ³J(PC) = 4.4 Hz, CMe₂; 127.9, t (AXX'), N = 6.8 Hz, C3; 128.5, s, C4; 133.7, t (AXX'), N = 20.5 Hz, C2; 137.0, t (AXX'), N = 9.8 Hz, C1; 211.8, t, ²J(PC) = 3.4 Hz, =C=. – IR (KBr): 1930 cm⁻¹, v_{as}(C=C=C). – MS (EI, 70 eV): m/z (%) = 436 (65) [M⁺], 262 (100), 251 (30), 183 (23).

C₂₉H₂₆P₂ (436.5) Ber. C 79.80 H 6.00 Gef. C 79.77 H 6.17

1-(tert-Butylphenylphosphino)-1-(diphenylphosphino)-3-methyl-1,2-butadien (12): Eine Lösung von 1.9 g 6 (7.53 mmol) in 20 ml Hexan wird bei 0°C mit 7.8 mmol tert-Butyllithium (1.56 м Lösung in Pentan) und mit 2 ml TMEDA (1.54 g, 13.3 mmol) versetzt und bei Raumtemperatur über Nacht gerührt. Die orangefarbene Lösung wird mit 20 ml THF verdünnt, bei 0°C zu einer Lösung von 1.48 ml Chlordiphenylphosphan (1.72 g, 7.8 mmol) in 20 ml THF getropft und bei Raumtemperatur über Nacht gerührt. Das Lösungsmittel wird im Vakuum entfernt. Der Rückstand wird in 50 ml Dichlormethan aufgenommen, mit Wasser gewaschen und getrocknet. Das Lösungsmittel wird entfernt, das zurückbleibende braune Öl mit 20 ml Ethanol aufgekocht und nach dem Abkühlen von etwas Feststoff abfiltriert. Nach einigen Tagen fällt 12 in farblosen Kristallen aus; Ausb. 1.47 g (47%), Schmp. $82-84^{\circ}$ C. - ¹H-NMR $(CDCl_3)$: $\delta = 1.13$, dd, ${}^{3}J(PH) = 12.0$ Hz, ${}^{5}J(PH) = 1.2$ Hz, 9H, $C(CH_3)_3$; 1.40, "t" (AXY), N = 3.8 Hz, 3H und 1.56, "t" (AXY), N = 3.8 Hz, 3H, $=C(CH_3)_2$; 7.2 bis 7.8, m, 15H, C_6H_5 . $- {}^{31}P_{-}$ NMR (CDCl₃): AB-System, ${}^{2}J(PP) = 174$ Hz; $\delta = -5.3$, d, PPh₂; 9.6, d, PPhtBu. $-{}^{13}$ C-NMR (CDCl₃): $\delta = 18.9$, d, ${}^{4}J$ (PC) = 1.0 Hz und 19.1, d, ${}^{4}J(PC) = 1.6$ Hz, $=C(CH_{3})_{2}$; 27.2, d, ${}^{2}J(PC) = 13.5$ Hz, $C(CH_3)_3$; 31.4, dd, J(PC) = 16.6 Hz, J(PC) = 8.8 Hz, CMe_3 ; 90.2, ",t" (AXY), N = 67.5 Hz, $= CP_2$; 92.5, dd, ${}^{3}J(PC) = 4.2$ Hz, ${}^{3}J(PC) = 1.0 \text{ Hz}, = CMe_{2}; 127.5, \text{ d}, {}^{3}J(PC) = 7.8 \text{ Hz}, C3 (PPhtBu);$ $127.7, d, {}^{3}J(PC) = 6.7 Hz und 128.0, d, {}^{3}J(PC) = 6.7 Hz, C3 (PPh_{2});$ $128.4, d, {}^{4}J(PC) = 2.1 Hz, C4 (PPh_{2}); 128.9, d, {}^{4}J(PC) = 1.0 Hz,$ C4 (PPhtBu); 133.5, d, ${}^{2}J(PC) = 14.0$ Hz und 133.8, d, ${}^{2}J(PC) =$ 14.0 Hz, C2 (PPh₂); 134.7, dd, J(PC) = 19.2 Hz, J(PC) = 2.3 Hz, C1; 135.4, d, ${}^{2}J(PC) = 20.2$ Hz, C2 (PPhtBu); 136.8, dd, J(PC) =15.6 Hz, J(PC) = 3.4 Hz, C1; 137.5, dd, J(PC) = 15.1 Hz, J(PC) =7.3 Hz, C1; 209.0, s, =C=. IR (KBr): 1930 cm⁻¹, $v_{as}(C = C = C)$. - MS (EI, 70 eV): m/z (%) = 416 (100) [M⁺], 359 (62), 186 (70), 183 (81).

C₂₇H₃₀P₂ (416.5) Ber. C 77.87 H 7.26 Gef. C 77.95 H 7.40

Röntgenstrukturanalysen von 8 und 12: Syntex-P 2₁-Diffraktometer, Mo- K_{α} -Strahlung, $\lambda = 0.71069$ Å, Graphit-Monochromator. Die Meßdaten wurden für Lp-, nicht aber für Absorptionseffekte korrigiert. Beide Strukturen wurden mit Direkten Methoden gelöst (SHELXS-86²⁰) und mit anisotropen Temperaturfaktoren verfeinert. Bei 8 konnten 42 H-Atome lokalisiert werden, bei 12 25. Die restlichen wurden jeweils nach idealisierter Geometrie berechnet. Bei der abschließenden Verfeinerung wurden sie mit $U_{iso} = 0.05$ Å² konstant gehalten. Hohe anisotrope Temperaturfaktoren für einige der C-Atome des Phenylrings C30–C35 in 12 sowie die Maxima der Restelektronendichte (Tab. 5) deuteten eine mögliche Fehlordnung oder geringe Abweichungen von der Raumgruppensymmetrie an. Da die Bindungsparameter jedoch nicht nennenswert verzerrt waren, wurde auf eine Auflösung verzichtet. Die minimierte Funktion bei den Verfeinerungen war $\Sigma w(|F_0| - |F_c|)^2$. Verwendete Programme: 8: GFMLX, 12: SHELX-76²¹⁾. Weitere Einzelheiten zur bei der Datensammlung, -reduktion und Strukturverfeinerung verwendeten Methodik finden sich in Lit.²²⁾. Tab. 5 enthält die Kristallstrukturdaten, Tab. 6 und Tab. 7 die Atomkoordinaten. Vollständige Parameter- und Strukturfaktorenlisten wurden hinterlegt²³⁾.

Tab. 7. Fraktionelle Atomkoordinaten und äquivalente, isotrope Temperaturfaktoren von 12

ATOM	X/A	Y/B	Z/C	U(eq.)
P1	0.0065(1)	0.3031(1)	0.3759(1)	0.028
P2	0.0444(1)	0.3199(1)	0,1793(1)	0.031
C1	0.1497(3)	0,3055(3)	0,2730(2)	0.028
C2	0,3100(4)	0,3065(3)	0,2607(2)	0.032
C 3	0.4700(4)	0,3091(3)	0,2402(2)	0.039
C 4	0,5249(4)	0,1772(3)	0,2024(2)	0.047
C5	0,6076(4)	0.4424(4)	0.2519(3)	0.055
C6	0.1274(4)	0.2793(3)	0,4630(2)	0.034
C61	0,1987(4)	0.1490(3)	0.4422(2)	0.040
C62	0.2702(4)	0.4129(3)	0.4773(2)	0.046
C63	0.0018(4)	0,2680(3)	0,5469(2)	0.042
C10	-0,1409(3)	0,1294(3)	0,3559(2)	0.030
C11	-0.3067(4)	0.1111(3)	0.3976(2)	0.036
C12	-0,4232(4)	-0.0175(3)	0,3859(2)	0.040
C13	-0.3774(4)	-0.1296(3)	0,3323(2)	0.043
CÌ4	-0,2156(4)	-0.1123(3)	0,2898(2)	0.044
C15	-0.0985(4)	0.0152(3)	0.3017(2)	0.036
C20	0.0971(3)	0,5096(3)	0.1753(2)	0.030
C21	0.2015(4)	0.6113(3)	0.2293(2)	0.038
C22	0,2301(4)	0.7524(3)	0.2212(2)	0.043
C23	0.1599(4)	0,7956(3)	0.1597(2)	0.043
C24	0.0558(4)	0.6977(4)	0,1072(2)	0.045
C25	0,0225(4)	0.5555(3)	0.1151(2)	0.039
C30	0.1872(4)	0,2614(3)	0.0868(2)	0.036
C31	0,1552(4)	0.1194(3)	0,0594(2)	0.042
C32	0.2573(5)	0,0634(3)	-0.0082(2)	0.051
C33	0,3871(6)	0,1481(4)	-0.0515(3)	0.063
C34	0.4193(6)	0,2882(5)	-0,0259(4)	0.074
C35	0.3214(6)	0.3449(4)	0.0430(3)	0.064

CAS-Registry-Nummern

1: 598-25-4 / 3: 109976-07-0 / 6: 62199-59-1 / 7: 109976-08-1 / 8: 109976-09-2 / 12: 109976-10-5 / Ph2PCl: 1079-66-9

^{1) 1a)} H. Schmidbaur, R. Herr, J. Riede, Chem. Ber. **117** (1984) 2322. – ^{1b)} I. J. Colquhoun, W. McFarlane, J. Chem. Soc., Dalton Trans. **1982**, 1915.

 ²⁾ H. Schmidbaur, Th. Pollok, *Helv. Chim. Acta* 67 (1984) 2175.
 ³⁾ ^{3a)} H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank, G. Huttner, *Chem. Ber.* 110 (1977) 2751. - ^{3b)} H. Schmidbaur, R. Herr, G. Müller, J. Riede, *Organometallics* 4 (1985) 1208. - ^{3c)} H. Schmidbaur, Th. Pollok, R. Herr, F. E. Wagner, R. Bau, J. Riede, G. Müller, *Organometallics* 5 (1986) 566.

 ⁴⁾ G. R. Cooper, D. M. McEwan, B. L. Shaw, *Inorg. Chim. Acta* **76** (1983) L 165. – ^{4b)} G. R. Cooper, F. Hassan, B. L. Shaw, M. Thornton-Pett, J. Chem. Soc., Chem. Commun. **1985**, 614. –

^{4c)} X. L. R. Fontaine, F. S. M. Hassan, S. J. Higgins, G. B. Ja-cobsen, B. L. Shaw, M. Thornton-Pett, J. Chem. Soc., Chem. Commun. 1985, 1635. - ⁴⁰ A. M. Herring, S. J. Higgins, G. B.

- Jacobsen, B. L. Shaw, J. Chem. Soc., Chem. Commun. 1986, 882.
 ^{5) 5a)} H. Schmidbaur, R. Herr, J. Riede, Angew. Chem. 96 (1984) 237; Angew. Chem. Int. Ed. Engl. 23 (1984) 247. ^{5b)} H. Schmidbaur, R. Herr, Th. Pollok, A. Schier, G. Müller, J. Riede, Chem.
- Ber. 118 (1985) 3105. Ber. 118 (1985) 3105. ⁶⁾ ^{6a)} H. Hopf in The Chemistry of Ketenes, Allenes and Related Compounds (S. Patai, Hrsg.), S. 848, Wiley, New York 1980. – ^{6b)} P. D. Landor in The Chemistry of Allenes (S. R. Landor, Hrsg.), S. 174, Academic Press, New York 1982. – ^{6c)} H. F. Schuster, G. M. Coppola, Allenes in Organic Synthesis, S. 247, Wiley, New York 1984. Wiley, New York 1984.
- ⁷⁾ W. Hewertson, I. C. Taylor, S. Trippett, J. Chem. Soc. C 1970, 1835
- ^b 8ai M.-P. Simonnin, B. Borecka, Bull. Soc. Chim. Fr. 1966, 3842. ^{8b)} C. Charrier, M.-P. Simonnin, C. R. Acad. Sci. 265 (1967) 1347. ^{8c)} M.-P. Simonnin, C. Charrier, C. R. Acad. Sci. 267 (1968) 550.
- ⁹ ^(a) H. Schmidbaur, Th. Pollok, Angew. Chem. **98** (1986) 365; Angew. Chem. Int. Ed. Engl. **25** (1986) 348. ^{9b)} H. Schmidbaur, Th. Pollok, G. Reber, G. Müller, Chem. Ber. **120** (1987) 1403.
- ¹⁰⁾ X. Creary, J. Am. Chem. Soc. 99 (1977) 7632.
- ¹¹ ¹¹ L. Brandsma, E. Mugge, *Recl. Trav. Chim. Pays-Bas* 92 (1973)
 628. ^{11b} J. Meijer, K. Ruitenberg, H. Westmijze, P. Vermeer,
- Synthesis **1981**, 551. ¹²⁾ ^{12a} A. J. Carty, Pure Appl. Chem. **54** (1982) 113. ^{12b)} Y. S. Wong, S. Jacobsen, P. C. Chich, A. J. Carty, Inorg. Chem. 13

- (1974) 284. ^{12e)} E. Sappa, M. Valle, G. Predieri, A. Tiripicchio, Inorg. Chim. Acta 88 (1984) L 23.
- ¹³⁾ A. J. Carty, N. K. Hota, T. W. Ng, H. A. Patel, T. J. O'Connor, Can. J. Chem. 49 (1971) 2706.
- Can. J. Chem. 49 (1971) 2706.
 ¹⁴ J.-C. Clinet, G. Linstrumelle, Synthesis 1981, 875.
 ¹⁵ ¹⁵ ¹⁵ J. Klein in S. Patai (Hrsg.), The Chemistry of the Carbon-Carbon Triple Bond, S. 343, Wiley, New York 1978. ^{15b} J. L. Moreau in The Chemistry of Ketenes, Allenes and Related Compounds (S. Patai, Hrsg.), S. 363, Wiley, New York 1980. ^{15c} R. Toriot, S. Chemistry (E. Durgel, T. Chemistry). Epsztein in Comprehensive Carbanion Chemistry (E. Buncel, T. Durst, Hrsg.), Teil B, S. 107, Elsevier, Amsterdam 1984.
- ¹⁶⁾ D. J. Peterson, J. Organomet. Chem. 8 (1967) 199.
- ¹⁷ G. Wittig, A. Maercker, J. Organomet. Chem. 8 (1967) 122.
 ¹⁷ G. Wittig, A. Maercker, J. Organomet. Chem. 8 (1967) 491.
 ¹⁸ ¹⁸ E. P. Kyba, C. W. Hudson, Tetrahedron Lett. 1975, 1869. –
 ¹⁸ E. P. Kyba, J. Am. Chem. Soc. 97 (1975) 2554. ¹⁸C. P. Kyba, J. Am. Chem. Soc. 98 (1976) 4805.
 ¹⁹ H. O. Kelienweldi, S. Berger, S. Braun, ¹³C. NMR-Spektroskopie.
- ¹⁹⁾ H.-O. Kalinowski, S. Berger, S. Braun, ¹³C-NMR-Spektroskopie, S. 133 und 274, Thieme, Stuttgart 1984.
- ²⁰⁾ G. M. Sheldrick in Computing in Crystallography 3, S. 175-189 (G. M. Sheldrick, C. Krüger, R. Goddard, Hrsg.), Oxford University Press, 1985.
- ²¹⁾ G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, England, 1976.
- ²²⁾ H. Schmidbaur, A. Schier, C. M. F. Frazao, G. Müller, J. Am. Chem. Soc. 108 (1986) 976.
- 23) Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2. Anforderungen sollten unter Angabe der Hinterlegungsnummer CSD-52493, der Autoren und des Zeitschriftenzitats erfolgen.

[167/87]